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Summary. An equation derived from density functional theory is used to im- 
prove energies calculated from approximate wave functions. The examples used 
are perturbed particle in a box and harmonic oscillators. The equation depends 
on the constancy of the chemical potential in these systems. The results are quite 
promising. 

Key words: Chemical potential - Density functional theory - Hardness - Local 
energy - Variance 

1. Introduction 

Recently a method was proposed for improving the energy of  a trial density 
function [1]. The method is based on the properties of the electronic chemical 
potential,/~o, which must be constant everywhere in a chemical system [2]. It was 
shown that 

dE = - ((/~ -/~0)2) 
4r/ ' (1) 

where/~ is the local chemical potential due to an approximate electron density, 
0, rather than the exact O °. The quantity t/ is the absolute hardness, defined 
as 2~/= (~#/rQ)v, where v is the potential due to the nuclei [3]. Similarly, 
/~o = (~EI~o)v.  

While r/is not constant, and can have local values, the quantity in (1) is the 
average, or global, value. It was assumed that r /=  ( t )  + (re),  the sum of the 
one-electron kinetic energy and the inter-electronic repulsion of two electrons in 
the same orbital. It is known that these are the terms which contribute to r/[4]. 
The energy lowering of Eq. (1) results from electron density being transferred 
from regions where/~ is too positive to regions where it is too negative. To be 
valid, the integrated amount of density transferred, AN, must be small. This 
means that the trial density, 0, must be close to Qo. 
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The working equation derived from Eq. (1) is 

- < ( E - 0 2 >  - 6  ~ 
AE - 4t/ 4t/ ' (2) 

where e is the local orbital energy [5] and ~ the average orbital energy. To be 
valid, ~ must be close to #o. The variance is equal to 6, since 
( ( e  - -  E-) 2> = ( £ 2 >  - -  ( g >2 ,  and 6 must be small. 

The above concepts are usually applied to atoms and molecules, where the 
electrons are the quantized particles. However it is clear that the same ideas 
should apply to other cases, such as the particle in a box and the harmonic 
oscillator. This paper will deal with such systems. The goal is two-fold: to show 
that it is useful to define the chemical potential and hardness of  such systems, 
and to see if Eq. (2) can be used to improve the energy of  approximate wave 
functions for these cases. 

Some change in terminology is appropriate. Thus #o is simply the chemical 
potential and e is the local energy of  a single particle. The term chemical 
potential is appropriate, since in some cases #o contributes directly to the 
thermodynamic quantity with that name, e.g. the vibration energy of  molecules. 
In accordance with density functional theory, only ground states will be consid- 
ered [6]. 

The examples used are particle in a box and harmonic oscillators with 
various perturbations. The unperturbed ground state wave functions are used for 
the approximate densities. In all cases the exact, or highly accurate, energy values 
can be found in the literature. Atomic units are used so that m = e2 =  1, and 
h = 2n. 

2. A perturbed potential box 

Consider a particle in a box with the potential equal to - Vo for l/2 > x > 0 and 
+ Vo for l > x > l/2. The value of ~ will be rc2/2l 2 for the ground state, e will be 

_ Vo, and 62 will be simply Vo 2. The value of  r/is the same as that of  ~, so that 
the energy correction from Eq. (2) is 

- V 2 o l  2 
A E =  2zr2 (3) 

To get an accurate energy, the second order perturbation energy is calculated 
by direct summation of  the corrections for even values of  n, up to n = 10 [7]. The 
result is AE = -0.467V~12/n 2, very close to that in (3). 

Further insight may be gained by looking at the changes in the particle density 
caused by the perturbation. Density should shift from the region o f +  Vo to - Vo. 
The total amount transferred can be calculated from the equation [1] 

ihgl= <IE- I> got = 
21/ = n2 . . (4) 

The same calculation can be made from perturbation theory by adding in the 
appropriate bits of  the excited state wave functions to the ground state, and 
squaring to get the correct density, 0 °. 

[AN[ = (10 ° - 0[) = 0.934VoI2/7r2. (5) 
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3. Perturbed harmonic oscillator 

3.1. HO in a linear field 

The potential energy is given by 

V = ½o92x2 - Fx (6) 

with g=o9/2 and q = ( t >  =09/4. The value of  6 2 is (F2x2>=F2/2og, so 
that AE = - F 2 / 2 o 9  2. The exact energy for the ground state is known to be 
o9/2-  F2/Fo9 2, so in this case the correction is exact [8]. 

The exact solution to (6) is that of a simple HO with the origin shifted from 
x = 0 to x = F/o9 2. As expected, particle density is shifted in the direction where 
# is more negative. 

3.2. HO with a cubic potential 

The potential energy is anharmonic, 

V = ½o92x2 - G x  3. (7) 
The values of  g and t /are  the same as above, and 62 = (G2x 6) = 15G2/8o93. The 
energy correction is -15G2/8o92. This is the same as an accurate value calculated 
by Herzberg using second-order perturbation theory [9]. 

3.3. HO with interaction term 

The potential energy is given by 

v = ½o92x2 + ½o9 y2 +  xy, C8) 

where • is small compared to o92. We have E = o9 and t / =  (ty> + (tx> = o9/2. The 
value of  62 is (~2xZyZ)= ~2/4o9z, and the energy correction is -~2/8w3. The 
exact energy for (8) is found by changing to the coordinates (x + y) and (x - y ) .  
The result is that 

( ~2 15~4 ) 
E = (o92 + ~)1/2 + (o92 _ ~)1/2 = o9 1 - 8o94 - 128o98 • • • . (9) 

This agrees with the calculated value through the quadratic term. 
A more complicated example is given by the Henon-Hei les  potential [10]. 

V 1 2 - 2 =  ~(Dx.r~ --~ ~U3yy'-2"2--~y(x2+~y2).. (10) 

We have g = ogx/2 + ogy/2 and 

3~ 2 3~2~ 15~2~ 2 

62-8o92xo9~ ~ -~ 4o9~o9~ + 8o9~ (11) 

There are two possible values of  the hardness: q = ogx/4 + ogy/4, or t / =  COy/4. 
The exact energies are known for the potential (10), but only for definite 

values of ogy, ogx, ~ and fl [ 10]. Taking the examples where ogx = 1.3 and ogy = 0.7, 
we can compare these values with those found from Eq. (2) with both choices for 
q. The uncorrected energy is e = 1.0000. 
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E(coy) E(CO x +coy) E exact 

- g  = / / =  0.1 0.9930 0.9975 0.9955 

- g  = / / =  0.2 0.9559 0.9845 0.9621 

It appears that better results are found if only ty contributes to the hardness. 
This is sensible since E changes markedly on going from + y  to - y ,  but is 
symmetric to + x. Thus it is the particle density with respect to the coordinate y 
which must change the most, and ty will be the most affected. However, the 
calculations show some dependence on tx. 

4. Two mutually repelling HOs 

An important example is provided by two isotropic harmonic oscillators which 
repel each other [11]. The potential function is 

V ,_2,_2 r~)+/~  =~to ~r l+  - - .  (12) 
g12 

This provides a useful model for two electron systems, such as He, H -  and Li + 
with nuclear charge, Z. In the case of electrons where fl = e2= 1, the energy in 
a.u. may be converted to HO units, co/2, by the relationship co/2 = 8Z2/9n a.u. 
This result comes from the properties of Gaussian orbitals [11]. 

The approximate wave function is the product of two three-dimensional HO 
functions, one for each electron. The uncorrected total energy is 6co/2 + (1/r12). 
The last term can be evaluated easily by converting to center-of-mass and 
interparticle distance coordinates [11]. For the hydride ion, Z = 1, we find 
(1/rl2) = 2.1213co/2. Similarly c~ 2 = (1/r~2) - (1/rl2) 2, is found to be 2.5688(w/ 
2) 2. The hardness is the single particle kinetic energy plus the interelectronic 
repulsion energy, r /=  (1.5 + 2.1213)co/2. 

In this way total corrected energies can be calculated for H - ,  He and Li +, 

Eun¢orr E¢orr Eexaot 
Z = 1 8.1213co/2 7.9440co/2 7.8819co/2 

2 7.0607 6.9980 6.9980 

3 6.7071 6.6748 6.6783 

as shown. 

The exact values are those calculated by Kestner and Sinanoglu [11]. Notice 
that omission of the interelectronic repulsion in evaluating r/, would lead to very 
poor results for the energy correction. 

5. Conclusions 

It appears that the concept of the chemical potential, #, which is constant 
everywhere in a quantum system, is useful for particles other than electrons. The 
Eq. (2) for correcting the energy found from an approximate wave function, 
works very well for harmonic oscillators and particles in a box. 

It is not clear why sometimes the correction gives exact answers, and 
sometimes not. The biggest uncertainty is in the value to use for the hardness, r/. 
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It is clear that the kinetic energy and particle repulsion energies are the factors 
which contribute to r/. However, it is very likely that the local hardness should 
enter in to the calculations, rather than the global value. 
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